Multi-Objective Optimization of the Process Parameters of a Grinding Robot Using LSTM-MLP-NSGAII

نویسندگان

چکیده

Grinding robots are widely used in the automotive, mechanical processing, aerospace industries, among others, due to their strong adaptability, high safety and intelligence. The grinding process parameters main factors that affect quality efficiency of robots. However, it is difficult obtain optimal combination only by manual experience. This study proposes an artificial intelligence-based method for optimizing a robot using neural networks genetic algorithm, with aim reduce workpiece surface roughness shorten time. Specifically, this first utilizing multi-objective optimization approach optimize robot. Based on experimental data ROKAE XB7, long short-term memory (LSTM) multilayer perceptron (MLP) were trained fit quantitative relationships between robot, such as feed rate, spindle pressure pneumatic motor pressure, result After that, non-dominated sorting algorithm II (NSGA-II) was calculate Pareto parameter combinations LSTM MPL model objective function. Compared based experience, optimized achieved reduction at least 13.62% whole time 28%. excellent results obtained validated feasibility proposed robots’ practical manufacturing applications.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

solution of security constrained unit commitment problem by a new multi-objective optimization method

چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...

A Comprehensive Study of the Hydroforming Process of Metallic Bellows: Investigation and Multi-objective Optimization of the Process Parameters

In this paper, for the first time, a comprehensive experimental study is performed on hydroforming process of metallic bellows. For this purpose, the effects of the main process parameters and their interactions on the characteristics of hydroformed metallic bellows are investigated using Response Surface Methodology (RSM). The selected parameters as input variables are internal pressure, die s...

متن کامل

Multi-objective Optimization of Laser Beam Machining Process Parameters

Laser beam machining (LBM) is one of the most widely used thermal energy based non-contact type advance machining process. In recent years, researchers have explored a number of ways to improve the LBM process performance by analyzing different factors that affect the quality characteristics of LBM process such as kerf width, kerf taper, surface finish etc. It is revealed from the literature th...

متن کامل

assessment of the efficiency of s.p.g.c refineries using network dea

data envelopment analysis (dea) is a powerful tool for measuring relative efficiency of organizational units referred to as decision making units (dmus). in most cases dmus have network structures with internal linking activities. traditional dea models, however, consider dmus as black boxes with no regard to their linking activities and therefore do not provide decision makers with the reasons...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Machines

سال: 2023

ISSN: ['2075-1702']

DOI: https://doi.org/10.3390/machines11090882